
Concurrency Control (2)

Concurrency and Parallelism — 2017-18
Masters in Computer Science

(Mestrado Integrado em Eng. Informática)

FACULDADE DE CIÊNCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

departamento de informática

Joao Lourenço <joao.lourenco@fct.unl.pt>
Base on slides from: https://users.cs.duke.edu/~shivnath/courses/fall06/Lectures/11_serial.ppt

and: Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Concurrency Control

• Contents:
– Conflict Serializable Schedules
– View Serializable Schedules
– Two Phase Locking

• Deadlock prevention and detection
– Other Concurrency Control methods:

Optimistic, Timestamp and Multiversioning

• Reading list:
– Chap 17 of Database management systems (3rd Ed.)

McGraw-Hill Education
Raghu Ramakrishnan, Johannes Gehrke
ISBN: 0-07-123151-X

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço ©	FCT-UNL	2017-18 2

Conflict Serializable Schedules

• Two schedules are conflict equivalent if:
– Involve the same actions of the same transactions
– Every pair of conflicting actions is ordered the same way

• Schedule S is conflict serializable if S is conflict
equivalent to some serial schedule

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 3

Example

• A schedule that is not conflict serializable:

• The cycle in the graph reveals the problem. The
output of T1 depends on T2, and vice-versa.

T1: R(A),	W(A),			 R(B),	W(B)
T2: R(A),	W(A),	R(B),	W(B)

T1 T2

A

B

Dependency	graph

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 4

Dependency Graph

• Dependency graph:
– One node per Trx;
– Edge from Ti to Tj if Tj reads/writes an object last written by

Ti.

• Theorem:
– Schedule is conflict serializable if and only if its

dependency graph is acyclic

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 5

Two-Phase Locking (2PL)

• Two-Phase Locking Protocol
– Each Trx must obtain a S (shared) lock on object before

reading, and an X (exclusive) lock on object before
writing.

– A transaction can not request additional locks once it
releases any locks.

– If an Trx holds an X lock on an object, no other Trx can get
a lock (S or X) on that object.

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 6

Strict 2PL

• Strict Two-phase Locking (Strict 2PL) Protocol:
– Each Trx must obtain a S (shared) lock on object before

reading, and an X (exclusive) lock on object before
writing.

– All locks held by a transaction are released when the
transaction completes

– If an Trx holds an X lock on an object, no other Trx can get
a lock (S or X) on that object.

• Strict 2PL allows only schedules whose
precedence graph is acyclic

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 7

View Serializability

• Schedules S1 and S2 are view equivalent if:
– If Ti reads initial value of A in S1, then Ti also reads initial

value of A in S2
– If Ti reads value of A written by Tj in S1, then Ti also reads

value of A written by Tj in S2
– If Ti writes final value of A in S1, then Ti also writes final value

of A in S2

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 8

View Serializability

• Schedules S1 and S2 are view equivalent if:
– If Ti reads initial value of A in S1, then Ti also reads initial

value of A in S2
– If Ti reads value of A written by Tj in S1, then Ti also reads

value of A written by Tj in S2
– If Ti writes final value of A in S1, then Ti also writes final value

of A in S2

T1:	R(A)		 W(A)
T2: W(A)
T3: W(A)

T1:	R(A),	W(A)
T2: W(A)
T3: W(A)

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 9

View Serializability

• Schedules S1 and S2 are view equivalent if:
– If Ti reads initial value of A in S1, then Ti also reads initial

value of A in S2
– If Ti reads value of A written by Tj in S1, then Ti also reads

value of A written by Tj in S2
– If Ti writes final value of A in S1, then Ti also writes final value

of A in S2

T1:	R(A)		 W(A)
T2: W(A)
T3: W(A)

T1:	R(A),	W(A)
T2: W(A)
T3: W(A)

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 10

View Serializability

• Schedules S1 and S2 are view equivalent if:
– If Ti reads initial value of A in S1, then Ti also reads initial

value of A in S2
– If Ti reads value of A written by Tj in S1, then Ti also reads

value of A written by Tj in S2
– If Ti writes final value of A in S1, then Ti also writes final value

of A in S2

T1:	R(A)		 W(A)
T2: W(A)
T3: W(A)

T1:	R(A),	W(A)
T2: W(A)
T3: W(A)

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 11

View Serializability

• Schedules S1 and S2 are view equivalent if:
– If Ti reads initial value of A in S1, then Ti also reads initial

value of A in S2
– If Ti reads value of A written by Tj in S1, then Ti also reads

value of A written by Tj in S2
– If Ti writes final value of A in S1, then Ti also writes final value

of A in S2

T1:	R(A)		 W(A)
T2: W(A)
T3: W(A)

T1:	R(A),	W(A)
T2: W(A)
T3: W(A)

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 12

View Serializability

• Schedules S1 and S2 are view equivalent if:
– If Ti reads initial value of A in S1, then Ti also reads initial

value of A in S2
– If Ti reads value of A written by Tj in S1, then Ti also reads

value of A written by Tj in S2
– If Ti writes final value of A in S1, then Ti also writes final value

of A in S2

T1:	R(A)		 W(A)
T2: W(A)
T3: W(A)

T1:	R(A),	W(A)
T2: W(A)
T3: W(A)

T1:																					R(A) W(B)
T2:	R(B),	W(A)																											W(B)
T3:																														R(A)																		W(B)

T1:																														R(A),	W(B)
T2: R(B),	W(A),	W(B)
T3:	 R(A),	W(B)

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 13

View Serializability

• Schedules S1 and S2 are view equivalent if:
– If Ti reads initial value of A in S1, then Ti also reads initial

value of A in S2
– If Ti reads value of A written by Tj in S1, then Ti also reads

value of A written by Tj in S2
– If Ti writes final value of A in S1, then Ti also writes final value

of A in S2

T1:	R(A)		 W(A)
T2: W(A)
T3: W(A)

T1:	R(A),	W(A)
T2: W(A)
T3: W(A)

T1:																					R(A) W(B)
T2:	R(B),	W(A)																											W(B)
T3:																														R(A)																		W(B)

T1:																														R(A),	W(B)
T2: R(B),	W(A),	W(B)
T3:	 R(A),	W(B)

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 14

View Serializability

• Schedules S1 and S2 are view equivalent if:
– If Ti reads initial value of A in S1, then Ti also reads initial

value of A in S2
– If Ti reads value of A written by Tj in S1, then Ti also reads

value of A written by Tj in S2
– If Ti writes final value of A in S1, then Ti also writes final value

of A in S2

T1:	R(A)		 W(A)
T2: W(A)
T3: W(A)

T1:	R(A),	W(A)
T2: W(A)
T3: W(A)

T1:																					R(A) W(B)
T2:	R(B),	W(A)																											W(B)
T3:																														R(A)																		W(B)

T1:																														R(A),	W(B)
T2: R(B),	W(A),	W(B)
T3:	 R(A),	W(B)

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 15

View Serializability

• Schedules S1 and S2 are view equivalent if:
– If Ti reads initial value of A in S1, then Ti also reads initial

value of A in S2
– If Ti reads value of A written by Tj in S1, then Ti also reads

value of A written by Tj in S2
– If Ti writes final value of A in S1, then Ti also writes final value

of A in S2

T1:	R(A)		 W(A)
T2: W(A)
T3: W(A)

T1:	R(A),	W(A)
T2: W(A)
T3: W(A)

T1:																					R(A) W(B)
T2:	R(B),	W(A)																											W(B)
T3:																														R(A)																		W(B)

T1:																														R(A),	W(B)
T2: R(B),	W(A),	W(B)
T3:	 R(A),	W(B)

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 16

Lock Management

• Lock and unlock requests are handled by the lock
manager

• Lock table entry:
– Number of transactions currently holding a lock
– Type of lock held (shared or exclusive)
– Pointer to queue of lock requests

• Locking and unlocking have to be atomic operations

• Lock upgrade: transaction that holds a shared lock can
be upgraded to hold an exclusive lock

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 17

Deadlocks

• Deadlock: Cycle of transactions waiting for locks
to be released by each other.

• Two ways of dealing with deadlocks:
– Deadlock prevention
– Deadlock detection

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 18

Deadlock Prevention

• Assign a timestamp to each Trx begin

• Assign priorities based on timestamps

• Assume Ti wants a lock that Tj holds. Two policies
are possible:
– Wait-Die: It Ti has higher priority, Ti waits for Tj; otherwise Ti

aborts
– Wound-wait: If Ti has higher priority, Tj aborts; otherwise Ti

waits

• Trxs restart with their original timestamp

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 19

Deadlock Detection

• Create a waits-for graph:
– Nodes are transactions
– There is an edge from Ti to Tj if Ti is waiting for Tj to release a

lock

• Periodically check for cycles in the waits-for
graph

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 20

Deadlock Detection (cont.)

Example:

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço ©	FCT-UNL	2017-18 21

T1:

T2:

T3:

T4:

T1: S(A),	R(A),

T2:

T3:

T4:

T1: S(A),	R(A),

T2: X(B),	W(B)

T3:

T4:

T1: S(A),	R(A), S(B)

T2: X(B),	W(B)

T3:

T4:

T1: S(A),	R(A), S(B)

T2: X(B),	W(B)

T3: S(C),	R(C)

T4:

T1: S(A),	R(A), S(B)

T2: X(B),	W(B) X(c)

T3: S(C),	R(C)

T4:

T1: S(A),	R(A), S(B)

T2: X(B),	W(B) X(c)

T3: S(C),	R(C)

T4: X(B)

T1: S(A),	R(A), S(B)

T2: X(B),	W(B) X(c)

T3: S(C),	R(C) X(A)

T4: X(B)

T1 T2

T3 T4

X(A)

Phantom reads

• If we relax the assumption that the DB is a fixed
collection of objects, even Strict 2PL will not
assure serializability:
– T1 locks all pages containing sailor records with rating = 1,

and finds oldest sailor (say, age = 71).
– Next, T2 inserts a new sailor; rating = 1, age = 96.
– T2 also deletes oldest sailor with rating = 2 (and, say, age =

80), and commits.
– T1 now locks all pages containing sailor records with rating

= 2, and finds oldest (say, age = 63).

• No consistent DB state where T1 is “correct”!
2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 22

The Problem

• T1 implicitly assumes that it has locked the set of
all sailor records with rating = 1.
– Assumption only holds if no sailor records are added while

T1 is executing!
– Need some mechanism to enforce this assumption. (Index

locking or predicate locking.)

• Example shows that conflict serializability
guarantees serializability only if the set of objects
is fixed!

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 23

Optimistic CC (Kung-Robinson)

• Locking is a conservative approach in which
conflicts are prevented. Disadvantages:
–Lock management overhead.
–Deadlock detection/resolution.
–Lock contention for heavily used objects.

• If conflicts are rare, we might be able to gain
concurrency by not locking, and instead
checking for conflicts before Trxs commit.

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 24

Kung-Robinson Model

• Trxs have three phases:
–READ: Trxs read from the database, but make

changes to private copies of objects.
–VALIDATE: Check for conflicts.
–WRITE: Make local copies of changes public.

ROOT

old

new

modified
objects

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 25

Validation

• Test conditions that are sufficient to ensure that
no conflict occurred.

• Each Trx is assigned a numeric id.
– Just use a timestamp.

• Trx ids assigned at end of READ phase, just
before validation begins. (Why then?)

• ReadSet(Ti): Set of objects read by Trx Ti.

• WriteSet(Ti): Set of objects modified by Ti.

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 26

Test 1

• For all i and j such that Ti < Tj, check that Ti
completes before Tj begins.

Ti
Tj

R V W

R V W

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 27

Test 2

• For all i and j such that Ti < Tj, check that both:
–Ti completes before Tj begins its Write phase +
–WriteSet(Ti) ⋂ ReadSet(Tj) is empty.

Ti

Tj
R V W

R V W

Does	Tj read	dirty	data?

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 28

Test 3

• For all i and j such that Ti < Tj, check that all:
–Ti completes Read phase before Tj does +
–WriteSet(Ti) ⋂ ReadSet(Tj) is empty +
–WriteSet(Ti) ⋂WriteSet(Tj) is empty.

Ti

Tj
R V W

R V W

Does	Tj read	dirty	data?	Does	Ti overwrite	Tj’s writes?

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 29

Applying Tests 1 & 2: Serial Validation

• To validate Trx T:
valid =	true;
//	S	=	set	of	Trxs that	committed	after	Begin(T)
< foreach Ts in	S	do	{
if ReadSet(T)	 ⋂ WriteSet(Ts)	≠	∅

then valid =	false;
}
if valid then	{	install	updates;	//	Write	phase

Commit	T	} >
else Restart	T

end	of	critical	section

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 30

Comments on Serial Validation

• Applies Test 2, with T playing the role of Tj and
each Trx in Ts (in turn) being Ti.

• Assignment of Trx id, validation, and the Write
phase are inside a critical section!
– I.e., Nothing else goes on concurrently.
– If Write phase is long, major drawback.

• Optimization for Read-only Trxs:
– Don’t need critical section (because there is no Write

phase).

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 31

Overheads in Optimistic CC

• Must record read/write activity in ReadSet and
WriteSet per Trx.
– Must create and destroy these sets as needed.

• Must check for conflicts during validation, and
must make validated writes ``global’’.
– Critical section can reduce concurrency.
– Scheme for making writes global can reduce clustering of

objects.

• Optimistic CC restarts Trxs that fail validation.
– Work done so far is wasted; requires clean-up.

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 32

“Optimistic” 2PL

• If desired, we can do the following:
–Set S locks as usual.
–Make changes to private copies of objects.
–Obtain all X locks at end of Trx, make writes

global, then release all locks.

• In contrast to Optimistic CC as in Kung-Robinson,
this scheme results in Trxs being blocked, waiting
for locks.
– However, no validation phase, no restarts (modulo

deadlocks).

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 33

Timestamp CC

• Idea: Give each object a read-timestamp (RTS)
and a write-timestamp (WTS), give each Trx a
timestamp (TS) when it begins:
– If action ai of Trx Ti conflicts with action aj of

Trx Tj, and TS(Ti) < TS(Tj), then ai must occur
before aj. Otherwise, restart violating Trx.

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 34

When Trx T wants to read
Object O
• If TS(T) < WTS(O), this violates timestamp order of

T w.r.t. writer of O.
– So, abort T and restart it with a new, larger TS. (If restarted

with same TS, T will fail again! Contrast use of timestamps in
2PL for ddlk prevention.)

• If TS(T) > WTS(O):
–Allow T to read O.
–Reset RTS(O) to max(RTS(O), TS(T))

• Change to RTS(O) on reads must be written to
disk! This and restarts represent overheads.

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 35

When Trx T wants to Write
Object O
• If TS(T) < RTS(O), this violates timestamp order of T

w.r.t. a reader of O; abort and restart T.
• If TS(T) < WTS(O), violates timestamp order of T

w.r.t. another writer of O.
• If TS(T) >= RTS(O) and TS(T) >= WTS(O)

– Allow T to write O.
– Reset RTS(O) to TS(T)
– Reset WTS(O) to TS(T)

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 36

Multiversion Timestamp CC

• Idea: Let writers make a “new” copy while
readers use an appropriate “old” copy:

O
O’

O’’

MAIN
SEGMENT
(Current
versions	of
DB	objects)

VERSION
POOL
(Older	versions	that
may	be	useful	for	
some	active	readers.)

❖ Readers are always allowed to proceed.
– But may be blocked until writer commits.

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 37

Multiversion CC (Contd.)

• Each version of an object has its writer’s TS as its
WTS, and the TS of the Trx that most recently read
this version as its RTS.

• Versions are chained backward; we can
discard versions that are “too old to be of
interest”.

• Each Trx is classified as Reader or Writer.
– Writer may write some object; Reader never will.
– Trx declares whether it is a Reader when it begins.

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 38

Reader Trx

• For each object to be read:
–Finds newest version with WTS < TS(T). (Starts

with current version in the main segment and
chains backward through earlier versions.)

• Assuming that some version of every object exists
from the beginning of time, Reader Trxs are
never restarted.
– However, might block until writer of the appropriate version

commits.

T

old																							new
WTS	timeline

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 39

Writer Trx

• To read an object, follows reader protocol.

• To write an object:
–Finds newest version V s.t. WTS < TS(T).
– If RTS(V) < TS(T), T makes a copy CV of V, with

a pointer to V, with WTS(CV) = TS(T), RTS(CV) =
TS(T). (Write is buffered until T commits; other
Trxs can see TS values but can’t read version
CV.)

–Else, reject write.

T

old																							new
WTS

CV

V

RTS(V)2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço ©	FCT-UNL	2017-18 40

Summary

• There are several lock-based concurrency
control schemes (Strict 2PL, 2PL). Conflicts
between transactions can be detected in the
dependency graph

• The lock manager keeps track of the locks
issued. Deadlocks can either be prevented or
detected.

• Naïve locking strategies may have the phantom
problem

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 41

Summary (Cont.)

• Optimistic CC aims to minimize CC overheads in an
``optimistic’’ environment where reads are common and
writes are rare.

• Optimistic CC has its own overheads however; most real
systems use locking.

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 42

Summary (Contd.)

• Timestamp CC is another alternative to 2PL; allows some
serializable schedules that 2PL does not (although
converse is also true).

• Ensuring recoverability with Timestamp CC requires ability
to block Trxs, which is similar to locking.

• Multiversion Timestamp CC is a variant which ensures
that read-only Trxs are never restarted; they can always
read a suitable older version. Additional overhead of
version maintenance.

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 43

The END

2017-12-06 Concurrency	and	Parallelism	— J.	Lourenço	©	FCT-UNL	2017-18 44

